64 research outputs found

    Cometary Astropause of Mira Revealed in the Far-Infrared

    Full text link
    Evolved mass-losing stars such as Mira enrich the interstellar medium (ISM) significantly by their dust-rich molecular wind. When these stars move fast enough relative to the ISM, the interaction between the wind and ISM generates the structure known as the astropause (a stellar analog of the heliopause), which is a cometary stellar wind cavity bounded by the contact discontinuity surface between the wind and ISM. Far-infrared observations of Mira spatially resolve the structure of its astropause for the first time, distinguishing the contact surface between Mira's wind and the ISM and the termination shock due to Mira's wind colliding with the ISM. The physical size of the astropause and the estimated speed of the termination shock suggest the age of the astropause to be about 40,000 yr, confirming a theoretical prediction of the shock re-establishment time after Mira has entered the Local Bubble.Comment: 9 pages including 2 figures. To appear in the Astrophysical Journal Letter

    Differential Proper-Motion Study of the Circumstellar Dust Shell of the Enigmatic Object, HD 179821

    Full text link
    HD179821 is an enigmatic evolved star that possesses characteristics of both a post-asymptotic giant branch star and a yellow hyper-giant, and there has been no evidence that unambiguously defines its nature. These two hypotheses are products of an indeterminate distance, presumed to be 1 kpc or 6 kpc. We have obtained the two-epoch Hubble Space Telescope WFPC2 data of its circumstellar shell, which shows multiple concentric arcs extending out to about 8 arcsec. We have performed differential proper-motion measurements on distinct structures within the circumstellar shell of this mysterious star in hopes of determining the distance to the object, and thereby distinguishing the nature of this enigmatic stellar source. Upon investigation, rather than azimuthal radially symmetric expansion, we discovered a bulk motion of the circumstellar shell of (2.41+-0.43, 2.97+-0.32) mas/yr. This corresponded to a translational ISM flow of (1.28+-0.95, 7.27+-0.75) mas/yr local to the star. This finding implies that the distance to HD 179821 should be rather small in order for its circumstellar shell to preserve its highly intact spherical structure in the presence of the distorting ISM flow, therefore favoring the proposition that HD 179821 is a post-AGB object.Comment: Accepted for publication in ApJ

    Spitzer/MIPS Imaging of NGC 650: Probing the History of Mass Loss on the Asymptotic Giant Branch

    Get PDF
    We present the far-infrared (IR) maps of a bipolar planetary nebula (PN), NGC 650, at 24, 70, and 160 micron taken with the Multiband Imaging Photometer for Spitzer (MIPS) on-board the Spitzer Space Telescope. While the two-peak emission structure seen in all MIPS bands suggests the presence of a near edge-on dusty torus, the distinct emission structure between the 24 micron map and the 70/160 micron maps indicates the presence of two distinct emission components in the central torus. Based on the spatial correlation of these two far-IR emission components with respect to various optical line emission, we conclude that the 24 micron emission is largely due to the [O IV] line at 25.9 micron arising from highly ionized regions behind the ionization front, whereas the 70 and 160 micron emission is due to dust continuum arising from low-temperature dust in the remnant asymptotic giant branch (AGB) wind shell. The far-IR nebula structure also suggests that the enhancement of mass loss at the end of the AGB phase has occurred isotropically, but has ensued only in the equatorial directions while ceasing in the polar directions. The present data also show evidence for the prolate spheroidal distribution of matter in this bipolar PN. The AGB mass loss history reconstructed in this PN is thus consistent with what has been previously proposed based on the past optical and mid-IR imaging surveys of the post-AGB shells.Comment: 9 pages in the emulated ApJ format with 6 figures, to appear in Ap

    Seimei KOOLS-IFU mapping of the gas and dust distributions in Galactic PNe: Unveiling the origin and evolution of Galactic halo PN H4-1

    Full text link
    H4-1 is a planetary nebula (PN) located in the Galactic halo, and is notably carbon-rich and one of the most metal-deficient PNe in the Milky Way. To unveil its progenitor evolution through the accurate measurement of the gas mass, we conducted a comprehensive investigation of H4-1, using the newly obtained Seimei/KOOLS-IFU spectra and multiwavelength spectro-photometry data. The emission line images generated from the KOOLS-IFU datacube successfully resolve the ellipsoidal nebula and the equatorial flattened disk that are frequently seen in bipolar PNe evolved from massive progenitors. By a fully data-driven method, we directly derived the seven elemental abundances, the gas-to-dust mass ratio, and the gas and dust masses based on our own distance scale. By comparing the observed quantities with both the photoionization model and the binary nucleosynthesis model, we conclude that the progenitors of an initial mass of 1.87 Msun and 0.82 Msun are second generation stars formed ~4 Gyrs after the Big Bang, and underwent mass-transfers, binary merger, and ultimately evolved into a PN showing unique chemical abundances. Our binary model successfully reproduces the observed abundances and also explains evolutionary time scale of H4-1.Comment: 19 pages, 5 figures, 11 tables, accepted for publication in PAS

    AKARI Mission Program: Excavating Mass Loss History in Extended Dust Shells of Evolved Stars (MLHES) I. Far-IR Photometry

    Full text link
    We performed a far-IR imaging survey of the circumstellar dust shells of 144 evolved stars as a mission programme of the AKARI infrared astronomical satellite using the Far-Infrared Surveyor (FIS) instrument. With this survey, we deliver far-IR surface brightness distributions of roughly 10' x 40' or 10' x 20' areas of the sky around the target evolved stars in the four FIS bands at 65, 90, 140, and 160 microns. Our objectives are to characterize the far-IR surface brightness distributions of the cold dust component in the circumstellar dust shells, from which we derive the amount of cold dust grains as low as 20 K and empirically establish the history of the early mass loss history. In this first installment of the series, we introduce the project and its aims, describe the observations, data reduction, and surface brightness correction process, and present the entire data set along with the results of integrated photometry measurements (i.e., the central source and circumstellar dust shell altogether). We find that (1) far-IR emission is detected from all but one object at the spatial resolution about 30" - 50" in the corresponding bands, (2) roughly 60 - 70 % of the target sources show some extension, (3) previously unresolved nearby objects in the far-IR are now resolved around 28 target sources, (4) the results of photometry measurements are reasonable with respect to the entries in the AKARI/FIS Bright Source Catalogue, despite the fact that the targets are assumed to be point-sources when catalogue flux densities were computed, and (5) an IR two-color diagram would place the target sources in a roughly linear distribution that may correlate with the age of the circumstellar dust shell and can potentially be used to identify which targets are more extended than others.Comment: To be published in PASJ AKARI Special Issue: 25 pages, 5 figures, 5 tables (and 28 supplementary figures available only in PASJ on-line
    • …
    corecore